Импульсный трансформатор

        Одним из основных элементов импульсных источников питания является импульсный трансформатор. Особенность работы данного вида трансформатора заключается в том, что на вход подается периодическая последовательность импульсов одной полярности, содержащие постоянную составляющую тока. В следствии чего, происходит непрерывное подмагничивание сердечника. Рассмотрим более детально работу импульсного трансформатора. Схема включения трансформатора изображена на рисунке 1 (а).

На рисунке 1 (б) приведены временные зависимости тока, напряжения и индукции во вторичной обмотке от напряжения на первичной обмотке:

Графики работы трансформатора

Рисунок 1. Схема включения (а) и временные диаграммы (б) импульсного трансформатора.

Так как напряжение на входе имеет прямоугольную форму е(t) и период следования импульсов больше чем их длительность, то при положительном напряжении (интервал tu )  индукция магнитного поля возрастает. А когда напряжение на входе отсутствует (интервал (T−tu)), индукция спадает по экспоненциальному закону. Скорость уменьшения и увеличения индукции сердечника трансформатора характеризуется постоянной времени, которая рассчитывается по формуле:

формула 1

Индукция изменяется от максимального значения Bm до значения остаточной индукции Br.

Данный процесс проиллюстрирован на рисунке 2. Рабочая точка на петле гистерезиса перемещается по частному циклу перемагничивания, что ведет к возрастанию минимально необходимых габаритов сердечника.

График изменения магнитной индукции

Рисунок 2. Перемещение рабочей точки в сердечнике импульсного трансформатора.

Следует обратить внимание, что напряжение на вторичной обмотке трансформатора U2 содержит отрицательный выброс в следствии накопленной сердечником энергии, что обеспечивается током намагничивания iμ. Это линейный ток, который добавляется к импульсному току нагрузки. В результате чего импульсы входного тока (первичной обмотки) имеют форму трапеции.

Напряжение во вторичной обмотке рассчитывается по формуле:

формула 2

где ψ – потокосцепление, s – сечение магнитопровода.

Так как производная от изменения постоянного тока в первичной обмотке при выбранных условиях имеет постоянное значение, то индукция сердечника импульсного трансформатора возрастает по линейному закону. Это позволяет нам заменить производную разностью начальных и конечных значений временного интервала. Тогда предыдущая формула будет иметь следующий вид:

формула 3

где Δt = tu - длительность входного импульса напряжения

Немного видоизменим формулу, заменив Δt длительностью импульса tu и умножим обе части формулы на эту величину:

формула 3.1

Данное выражение описывает площадь импульса напряжения, передаваемого во вторичную обмотку, что является основной характеристикой импульсного трансформатора. Она зависит напрямую от перепада индукции, чем больше ΔB, тем больше площадь и соответственно тем лучше. Величина ΔB определяется индуктивностью первичной обмотки, которая зависит от площади сечения сердечника, его магнитной проницаемости и количества витков провода:

формула 4

Значительно влияет на индуктивность трансформатора магнитная проницаемость. Исходя из чего, при проектировании трансформатора выбирают магнитный материал с линейным участком кривой намагничивания, а также с наибольшим значением μа. Выбранный магнитный материал должен обладать минимальным значением остаточной индукции Вr. В случае, если магнитный материал и тип обмотки не подходят, форма импульса значительно искажается, что негативно отражается на характеристиках трансформатора и приводит к появлению шумов в аппаратуре.

Из магнитных материалов для изготовления импульсных трансформаторов используются тонкие ленты трансформаторных сталей или пермаллой с малым коэффициентом прямоугольности:

формула 5

В высокочастотных импульсных трансформаторах применяются ферритовые сердечники, так как они имеют малые динамические потери.