Rambler's
Top100


Rambler's
Top100

Статьи

Выбор резисторов для СВЧ приложений

Назад

СВЧ техника все активнее вторгается в жизнь рядового обывателя. Уже никого не удивишь сотовым телефоном или спутниковой антенной. Однако, мало кто догадывается, что разработчикам этой аппаратуры приходится решать различные задачи, связанные с выбором электронных компонентов. Данную публикацию мы посвятим проблеме правильного выбора резисторов для поверхностного монтажа, имеющих хорошие и предсказуемые параметры на частотах до 20 ГГц, а также вопросам их моделирования.

    Стандартный спиральный MELF (Metal ELectrode Face-bonding) резистор (рис. 1a), имеет большую последовательную индуктивность, которая создает недопустимое реактивное сопротивление даже на частотах в несколько ГГц (рис. 2). Для снижения паразитной индуктивности производители высокочастотных резисторов используют специальную “импульсную” топологию резистивного слоя (рис. 1б). В тех же целях возможно использование стандартной “меандровой” топологии резистивного слоя.

Для MELF-резисторов использование импульсной топологии (б) позволяет снизить паразитную последовательную индуктивность, по сравнению с обычной спиральной топологией (а)

Рис. 1. Для MELF-резисторов использование "импульсной" топологии (б) позволяет снизить паразитную последовательную индуктивность, по сравнению с обычной спиральной топологией (а)

Паразитная последовательная индуктивность стандартного MELF-резистора ММА0204 является причиной резонанса на частотах в несколько ГГц

Рис. 2. Паразитная последовательная индуктивность стандартного MELF-резистора ММА0204 является причиной резонанса на частотах в несколько ГГц. Использование специальной топологии в резисторе ММА 0204 HF позволяет сдвинцть этот резонанс далеко вверх по диапазону

    Помимо небольшой остаточной индуктивности в резисторе присутствует другой внутренний паразитный реактивный компонент — параллельная емкость, возникающая между металлическим выводом и телом резистора, расположенным на керамическом диэлектрике. При монтаже резистора на плате между его выводами и общим проводом также возникает паразитная емкость, показанная на рис. 3 конденсаторами Ci.

Схема замещения высокочастотного резистора с паразитной емкостью выводов

Рис. 3. Схема замещения высокочастотного резистора с паразитной емкостью выводов

    Наличие упомянутых паразитных реактивных составляющих отражается на параметрах матрицы рассеяния (коэффициентах отражения и передачи) резистора. Поэтому для резисторов различных типов и размеров, предназначенных для поверхностного монтажа, можно сформулировать следующие правила:

  • для диапазона частот, соответствующего неравенству 0,8 < ЅZЅ/R < 1,2, для большинства приложений паразитные реактивности можно не учитывать;
  • паразитная индуктивность начинает проявляться у MELF-резисторов с сопротивлением выше 75 Ом и чип-резисторов с сопротивлением выше 120 Ом (то есть, импеданс растет с ростом частоты);
  • паразитная емкость начинает проявляться у MELF-резисторов с сопротивлением ниже 75 Ом и чип-резисторов с сопротивлением ниже 120 Ом (то есть импеданс уменьшается с ростом частоты);
  • для всех топологий резисторов их характеристики на высоких частотах улучшаются по мере снижения габаритных размеров;
  • MELF-резисторы с “импульсной” топологией на высоких частотах имеют, как правило, лучшие характеристики, чем плоские чип-резисторы, даже выполненные по специальной топологии. На рис. 4 показаны частотные зависимости отношения ЅZЅ/R для нескольких различных типов резисторов с номинальным сопротивлением 50 Ом (наиболее часто используемое сопротивление нагрузки в СВЧ-устройствах).

Плоский чип-резистор со специальной топологией МСТ 0603 HF демонстрирует значительно лучшие характеристики, чем стандартные плоские чип-резисторы МСТ 0603 и MCU 0805

Рис. 4. Плоский чип-резистор со специальной топологией МСТ 0603 HF демонстрирует значительно лучшие характеристики, чем стандартные плоские чип-резисторы МСТ 0603 и MCU 0805. Параметры так же Micro-MELF резисторов MMU 0102 и ММА 0204 превосходят параметры всех упомянутых моделей

    В случае, когда разрабатываемое устройство будет работать вне диапазона частот, соответствующего неравенству 0,8 < ЅZЅ/R < 1,2, или в случае, когда требуется очень точно определить его частотные характеристики, необходимо учитывать не только внутренние, но и внешние паразитные реактивные составляющие, что позволит компенсировать их на нужных частотах. Наиболее простой и легкий способ — моделировать устройства с использованием не идеальных, а поставляемых производителем моделей резисторов. Например, компания BC Components предоставляет точные модели для схемы замещения (рис. 3) для всех своих резисторов. Отметим, что внешние паразитные емкости Ci, возникающие между выводами компонента и общим проводом, зависят от материала печатной платы и ее топологии, а значит должны оцениваться и моделироваться разработчиком на уровне схемы, а не производителем на уровне компонента. Для данной схемы замещения резистора комплексное сопротивление рассчитывается по формуле:

Z = R·(1 + jwL/R)/(1 – w2LC + jwRC).

    Так как значение члена w2LC для высокочастотных резисторов, как правило, невелико, им можно пренебречь. После такого упрощения приведенная выше формула примет вид:

Z = R·(1 + jwL/R)/(1 + jwRC)

    Это выражение показывает, что частотные характеристики резисторов определяются отношением L/R и произведением RC.

    Если значения L/R и RC будут равны, то импеданс резистора не будет зависеть от частоты. Однако такое равенство очень сложно реализовать на практике.

    Значения параметров схемы замещения реальных резисторов получаются посредством сравнения зависимостей ЅZЅ/R, построенных по измеренным параметрам матрицы рассеяния, с теоретически рассчитанными кривыми. Отметим, что здесь учитываются не только модуль, но и фаза этих характеристик.

Частотные зависимости нагрузки тракта 50 Ом, выполненной из двух параллельно включенных резисторов MMU 0102 HF с номиналом 100 Ом, и стандартных нагрузок, реализованных на стандартных разъемах BNC и N типов

Рис. 5. Частотные зависимости нагрузки тракта 50 Ом, выполненной из двух параллельно включенных резисторов MMU 0102 HF с номиналом 100 Ом, и стандартных нагрузок, реализованных на стандартных разъемах BNC и N типов

    Как показано на рис. 4, высокочастотные плоские чип-резисторы типа MCT 0603 HF обеспечивают вполне приемлемые характеристики на частотах вплоть до 10 ГГц. Для критических приложений, тем не менее, больше подходят MELF-резисторы MMU 0102 HF или MMA 0204 HF, успешно работающие на частотах до 38 ГГц. На рис. 5 показана частотная зависимость нагрузки тракта 50 Ом, выполненной из двух параллельно включенных резисторов MMU 0102 HF с номиналом 100 Ом (для дополнительного снижения паразитной последовательной индуктивности), а также зависимости стандартных нагрузок, реализованных на стандартных разъемах BNC и N типов.

Источник: CIE
Опубликовано: www.chipinfo.ru

Компания РЕОМ занимается производством и поставками ВЧ и СВЧ резисторов. Примеры нашей продукции: ВЧ-резистор Р1-69,  СВЧ-резистор С6-5, ВЧ-резистор УВ2-5.

Назад

Добавить комментарий

 
© РЕОМ, 2006
создание сайта интернет-агентство "Волекс"
Продвижение сайта - интернет-агентство "Волекс"